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We prove the H-stability property and the existence of the thermodynamic 
limit of the free energy density of the two-dimensional, one-component 
classical plasma. We give lower and upper bounds on the free energy 
density in any dimension v and draw some consequences. 
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1. I N T R O D U C T I O N  

This  p a p e r  dea ls  w i th  t he  o n e - c o m p o n e n t  c lass ical  p l a s m a  c o n s t i t u t e d ,  in  a 

d o m a i n  A, by  N p o i n t  cha rge s  (e lect r ica l  c h a r g e  e q u a l  to  - e ) ,  i m m e r s e d  in  a 

u n i f o r m  n e u t r a l i z i n g  b a c k g r o u n d  o f  d e n s i t y  p = NIl AI. 
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We prove the H-stability property of the Hamiltonian as well as the 
existence of the thermodynamic limit of the canonical free energy density in 
the two-dimensional case. Accurate extensive bounds on the free energy are 
established in any dimension v, and some bounds on the pressure are obtained. 
The peculiarity of the two-dimensional case, due to the long-range nature of 
the logarithmic Coulomb potential, is discussed. The three-dimensional case 
has been published recently by Lieb and Narnhofer. (~ 

2. H - S T A B I L I T Y  

Theorem 1. Assuming the system to be neutral, with p the fixed back- 
ground density, then, for any dimension v, there exist extensive density- 
dependent lower bounds on the Hamiltonian: 

H(V)(xl,..., x~r >~ -Nb(V)(p), b(V)(p) : �89 + �88 2 

where E(~)(p) is the self-energy of a ball of density p and total charge + e, i.e. 
IS(0 ~- 2~r'J2r(v/2)], 

E(,)(p)= v ~ + s i g n ( v - 2 )  ~ , v # 2  

( v - 1  1 p ~ ) e  2 
v ~  + ~ ln  ~-, v = 2  

We have previously given <2) a heuristic derivation of these bounds, as 
well as a careful analysis of the nature of the ground state of the model in two 
and three dimensions; -b(~(p) is simply the Coulomb energy of the neutral 
elementary system (consisting of just one particle and the background) in the 
configuration of smallest energy. Explicitly, 

e2 2( 3 1  ) 9e2 ( ~ )  z/3 
b<Z)(P) = 12p' b(2>(p) = e ~ + ~ In 7rp , b(3)(p) = -~- 

This theorem has been proved for the three-dimensional case by Lieb 
and Narnhofer; C1) we give here the proof for the two-dimensional case along 
the same lines. 

Proof Following an idea of Onsager, (a) we replace the point charges 
by charge distributions smeared into disks of radius a. We define H~  ), the 
self-energy of the background in the domain; H~ (2>, the interaction energy of 
the particle i with the background; H~(~ ), the interaction energy of the particles 
i and j ;  ~(~>, the interaction energy (or twice the self-energy when i = j )  of 
disks of total charge - e ,  centered at x~ and xj; and ~}2>, the interaction 
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energy of such a disk with the background. Then 

N N 

i = ]  ~ < j  

= N s 
~=i ~,]=i 

N 
1 S" (/I<2~ 

1 N 

t = 1  

The quantity in the brackets is obviously positive. On the other hand, H6 z) is 
greater than or equal to ~.2~ by virtue of the superharmonicity of the Coulomb 
potential, so that 

H<2)(x~,..., x~v)~> ~ (H~2) _ /-~r~2>)_1 
i= i 2 i =  

A direct calculation shows that H ~  ) = e2(�88 In a), and H~ ~) -/~{2> i> 
-rrpa2e2/4.  The best bound on HC2>(xl,..., xN) is obtained when ~rpa 2 = 1. 
Consequently, 

H(2)(x~ .... , xN) >i - N e 2 ( ~  + �88 In ~rp) 

for any configuration (x~ ,..., xN) of particles. 
R e m a r k .  These bounds hold for each domain A of reasonable shape. 

However, except for the case N = 1 particle and A spherical, where the 
ground state has the greatest symmetry, they can never be reached. For 
N > 1 and large, the configurations of highest symmetry are then given by 
the Wigner lattices, (2~ i.e., the crystalline configurations of particles whose 
energies are extremely close to the above bounds. Finally, these bounds 
provide lower bounds on the free energy density, i.e., 

flfcv) >1 --p[1 + fipb<~)(p) -- In p] (1) 

3, UPPER B O U N D S  ON THE FREE E N E R G Y  DENSITY  

T h e o r e m  2. Assuming always charge neutrality, there exists an extens ive  
upper bound on the canonical free energy, i.e., 

f l f~) <~ p In p - fipc~(p) (2) 

To prove this, we use the method of cells worked out in our previous paper. 

Proof .  Let A be a domain of reasonable shape. Then, it is possible to 
partition A into N cells e~, (i = 1,..., N), with % m ej = ~,  i r j ,  and 
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~J, c~ = A, each one of volume 1/0 and offinite self-energy. Each cell contains 
just one particle and thus is electrically neutral. Restricting ourselves to such 
configurations, we have, using Jensen's inequality, [(x) -- (xl,..., x~)], 

f d 'x l  ... a'xN exp[-flH(')(x)l >t N! f a 'xl  ... d~xN exp[-fiH(')(x)] 
d J( cells) 

On the other hand, for  0.)(lx 1) the Coulomb potential in v dimensions, 

 ff. (H('))oou,f~ o = Hb(~ ) + e 2 o~Ll~) 
t<  s ffr dVxt dVxs 

'.~ IS(cells, dVx, dvx.#~(v)(Ixi- .xj] ) 
eZP t,,=x/--' Sr d~x-------~ 

where 

N 

= -  ~ Selfk ~) 
k=X 

Self~V) =- �89 f f c dVx d'y g(')(lx - yD 
cell K) 

is the self-energy of the cell K. In particular, for a large domain, a choice of 
cells of Wiguer-Seitz type is possible, and we have 

flfr ~< p In p - / 3 0  Self~)s 

The theorem is proved by putting c,(p) = Self~Y~. 
Consequently, combining the inequalities (1) and (2), we obtain for the 

excess free energy density Afr ---- fr -- fo, wherefo = fl-lp(ln p - 1), 

-Bb(')(o ) ~< (fl Af('))/o ~< 1 - fi Self~)s (3) 

The better upper bounds are obtained by taking the Wigner-Seitz ceils of 
maximum self-energy (hence associated with the configuration of particles 
with the minimum energy), i.e., for v = 2, the hexagonal cell, and for v = 3, 
that of the bcc lattice. From the results derived in Ref. 2, we obtain explicitly, 
f o r v =  1 ,2 ,3 ,  

fle2/12O ~< ~ Afm)/e ~< 1 + (fle2/6O) 
-fle2(~ + �88 In ~p) <<. (,8 Af<a))/p <~ -fle2(~ + �88 In rrp) + 1.253 

-0.9fle2(4rrp/3)lla <<. (j3 Af(3))/p <<. -0.66~e2(4rrp/3) Ira + 1 

Remarks. (1) The existence of these bounds, although not sufficient, 
clearly indicates and strongly suggests that the usual thermodynamic limit of 
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the free energy density of this model may exist. (2) From these inequalities, 
there clearly emerges the peculiarity of the two-dimensional case: The lower 
and upper bounds have the same dependence with respect to the density p. 
This fact will be reflected in the equation of state (Section 5). 

4. THE T H E R M O D Y N A M I C  L I M I T  

We shall give the proof  of the existence of the thermodynamic limit for 
the free energy density for v = 2 dimensions. The idea is to employ the 
"cheese"  theorem of Lieb and Lebowitz ~4) adapted to the one-component 
case. The two-dimensional case presents a particular difficulty due to the 
long-range nature of  the logarithmic potential. We shall formulate the 
problem for circular domains only. The case of more general domains can 
be handled along the customary lines given by Fischer ~5~ and Lieb and 
Lebowitz. 

A o o  Consider a standard sequence of disks ~ ~}k=o, strictly neutral, of radii 
Rk = Ro(1 + p)~, p = 10, where Ro = (~.p)-lt2 is the radius of the disk A0, 
which contains one particle in the neutralizing background of fixed density p. 
The number of  particles in the disk A k is then taken to be equal to (1 + p)2~. 
Let nk ~- yk(1 + p)2~/p, where ~, -= p/(1 + p). 

According to Ref. 4, it is possible to pack A~ (l > 0) with /-1 U;=o (n _j 
disks Aj that do not overlap). Let us call Dz the complement of the union of 
the Aj ( j  = 0,..., l - 1) in A z. The fraction of volume Az = [D~]/IAz[ left 
unfilled after the disk of type l has been packed, 

/ - 1  

Al = 1 -- ~ n,_j(]Aj[/lAz[) = ~l, ~, < l 
J = O  

goes exponentially to zero; and the packing is complete. 
Let Z}2~(At, Nz = plAzl;/~), l = 0, 1 .... be the configuration partition 

function of the system in At with Nz = plat I particles in the background, 

i f  f, dZxl ... d2xm exp[_~H(Z)(xl,..., xN,)] Zt2'(A~, N/; fl) = ~ "'" A,)~, 

and the corresponding free energy density is fz~2): 

g}2) = _/~fl(2) = (ln Z,(2~)/]A,] 

Exploiting Newton's electrostatic theorem and the fact that all the 
domains, except D~, are both circular and neutral, we derive the following 
inequality: 

/ - 1  
,t~(2) g}~' t> (l/p) ~ ~;-,g}2, + r~o, (4) 

J = o  
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where 
g~,) - [In Zg])(D,, Mz = pID, I;/3)]/[D,I 

However, from Jensen's inequality, we have 

ln Z~, = ln(lD, l~'/M,l) + { f ... f,,M d2xl ... d%~, 

d2XM, 

>1 ln(ID,[M,/M,!) - @ID, IM,) f "' fo,,~ d2xl ... d~x~flr 

= In(]D,[M,/Mz!) + (fl/m3H~,f,D, 

where uc2> is the background self-energy in D,. At this stage the peculiarity a a  b b , D  1 

of the two-dimensional case appears: In the three-dimensional case Ho<~ ) is 
positive. However, let us denote by 12, the smallest radius of the disk that 
contains D~. Then a direct computation shows that 

(2)  fiH~b,DJMt ~ -�89 l In _~, 

Taking/2, = R~, and for large l, the inequality (4) implies that 

7~- Jg~2> 1 In In _p)2z_ 
(1 + 

g ~ , ~ > : y  + C o  - p -  
j=o ~P / 

Writing 7'p{1 - In p - �88 2 ln[(1 + p)2t/Trp]) simply as C} 2>, (Y.r=o C(z 2> < oo), 
and putting 

I - 1  1 _jg?~ + + 

j = 0  

where $~2) is a nonnegative real number, we can prove the explicit solution of 
this equation, valid for l > 0, by induction to be 

l 

g~') = (1 - y)g(o 2) + 7(C~ 2) + ,~2)) + (1 - 7) ~ (C} 2) + ~92,) 
j = l  

g~2) has a limit g~2)(p, fl) because (i) g~02~ is finite; (ii) the terms involving C ~2~ 
have a limit; (iii) since each 3~2) ~> 0 and since g~2~ has an upper bound by 
H-stability, the sum involving the 8 ~2~ must converge and then 8~ 2~ -+ 0. 

This limit has been established evidently for a p-dependent sequence of 
disks. However, one can show that the thermodynamic limit of g~2~ exists for 
more general sequences of domains {A,} and is the same as that for the 
standard sequence (disks). A discussion of conditions on domains {A,} may 
be found in Ref. 4. 
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Remark. Recently, Fr6hlich e~) has proved via constructive quantum 
field theory the existence of  the thermodyrLamic timit of the grand canonical 
free energy density for the two-component plasma in two dimensions, for 
fl < 4/eL It should be interesting to obtain this result directly by the methods 
of the statistical mechanics for the canonical ensemble (for this model, the 
equivalence of ensembles introduces no problem). Letting 7c2) be the con- ~ ( 2 )  

figuration partition function (cpf) of the two-component plasma of N particles 
of  charge ( - e )  and coordinates (x,) an6 N particles of charge ( +  e) and 
coordinates (yj), Z ~  the cpf of the one-component plasma with N particles 
of charge ( -  e) in a neutralizing background, and Z~0 => the cpf of a gas of  N 
particles without interaction, all of  volume A, we have immediately, using 
iensen's inequality [(s162 --- (x:,..., xu); 07N) -- (y,  .... , y~)], 

Z '~  -- I/kl~ f .-- f d~2N expt-flH-(:~N)] 

f "'" fA~ d %  e x p [ - f l H  +07N) - flH + -(2N; .9N)] 
X - -  

[AV f ... ( d~N exp{--/~[H-(~N) + <,q+(Y,,) + H +-(~,,;.~,,)>3) >i (N !)~ J,v, J 

where 

and 

< a  + ( ~ , ) )  - 
e= ~ f "" jae d2y__~l ..- dg_y ~ ln] Y_.____L - y,[ 

< u +  = f fA- d2y, ,.. d %  1nix, - y,l 

i = l  

so that for large A 

~ ( O ) Z - ~ ( l )  

,- 7c2) It is The difficulty is then to find an extensive upper bound on m z~(m. 
expected that In 7(2) ;o ~c2) ,o bounded above, for T > Tc = e2/4ks, by an extensive 
quantity plus a contribution proportional to N In Q*, where Q* is the parti- 
tion function of the system in a volume unit with two particles ( +  e) and ( -  e). 
If  this conjecture is verified, the proof 6f flue existence of the thermodynamic 



98 R.R. Sari and D. Merlini 

limit should be obtained immediately by the application of the strategy of 
Lieb and Lebowitz. m 

5. S C A L I N G  P R O P E R T I E S  

As first observed by Brush et al., (7) the thermodynamic quantities of the 
three-dimensional, one-component classical plasma depend essentially only 
on the plasma parameter P - fie2(4~rp/3) 1/3. Similarly, for the two-dimensional 
case, a scaling property can be established, leading immediately to the equa- 
tion of state derived by Hauge and Hemmer, (8) independently of the knowl- 
edge of the existence of the thermodynamic limit for the canonical free energy. 

More generally, we will now show that the state of the system can be 
characterized essentially by the plasma parameter ~,(~) - fle2p (~- 2)/~. 

Let N, the number of particles, be kept fixed; and consider the following 
transformations: 

x '  = xh  (~), t 3' = firn (~), p' = pn (v> 

Then h ~> = (n(~)) -1/~ and 

;::f d~x~ exp[-13H~)(x)] 
L 

= ;s  ~ dVx" t exp m ~ " v )  (n , {exp[-13 N(ln n , ~,2]} 

The choice rn(~)(n(~)) (~-2)12 = 1 gives therefore for the free energy density 
times (-13) 

g(V)(p, 13) = - ~  

Choosing pn ~ = 1, we have 

g(~)(p, fl) = pg(~)(1, yc~)) _ (p In p)(1 - ~>,(v) ~v,2) (5) 

and the equation of state reads 

t i p =  _ p 2 ~  =13P (h r + p 1 - ~ 3 ~ , 2  (6) 

where (h r is the mean value of the potential energy per particle. For v = t, 
taking account of the bound of H-stability, we obtain f iP/p ~< 1 - fle2/12p; 
and for v = 2, f iP/p = 1 - fie2~4. However, we now obtain, in this dimension- 
ality, one more result. In fact, since the existence of the thermodynamic limit 
of the free energy density has been established, this takes the simple form 

- ~ f ( ~ ) f f l e  ~) = - ~ f *  ~2)(fie2) - (,o In p)(1 - �88 2) 
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P 

Fig. 1 

where f *  (2~(�88 = 1) is the free energy density at the "catastrophe point"  or 
"threshold of  thermodynamic instability" Tc = e2/4kB. The pressure and 
compressibility become negative for T < To. On the other hand, for v = 3, 
flP/p >/ 1 - 31"/10 (from the H-stability). Thus, for 17 < 10/3 the pressure is 
positive. Moreover, using the results of Theorem 2, we know that the excess 
free energy density behaves as -p~/3  and thus the pressure must be negative 
for large 1". Assuming that the free energy density can be approximated by 
either of the bounds previously given, we define the corresponding pressures 
(Fig. 1): 

/ P1 = p ( 1  -  or), = p ( 1  - 

The values of 1"1 = 2.5 and I~2 = 3.375, which correspond to the maxima of 
the pressures P1 and P2, respectively, are not far from the value 1" ~ 3 from 
Monte Carlo calculations, which defines the onset of a negative compressi- 
bility. 

To conclude, we note that it is widely accepted that an ordering, namely a 
transition into a crystalline state, is possible in this system for v >/2. Then 
it should be worthwhile to prove or disprove this in the region of 7 (~) where 
the model satisfies thermodynamic stability. 
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